

MINI REVIEW

The role of computational nanotechnology in accelerating the design, discovery, and development of advanced nanomaterials

Hiroshi Fujimato¹, Yuki Matsuda¹ and Takashi Ishikawa²

¹Institute for Advanced Nanomaterials Research, Kyushu University, Japan ²Department of Molecular & Nanoscale Engineering, Kobe University, Japan

ABSTRACT

Computational nanotechnology has transformed materials science by providing unmatched capabilities for modelling, simulating, and predicting phenomena at the nanoscale. By utilizing sophisticated computational methods such as density functional theory (DFT), molecular dynamics (MD), and machine learning (ML), this area allows for a more precise and efficient approach to designing and discovering new nanomaterials. In contrast to conventional experimental techniques, which can be labor-intensive and require significant resources, computational nanotechnology expedites the research process using tools like high-throughput screening, inverse design, and multiscale modelling. These methodologies help connect quantum-level interactions to macroscopic material characteristics, fostering the creation of next-generation materials with customized properties. In the realm of energy storage and conversion, computational techniques are essential for optimizing catalysts and enhancing battery materials to boost efficiency and performance. In nanomedicine, simulations aid in crafting targeted drug delivery systems and innovative biosensors, paving the way for personalized healthcare solutions. Likewise, in the field of electronics, computational nanotechnology plays a crucial role in developing more effective semiconductors and cutting-edge photonic devices. Furthermore, this domain fosters sustainability by encouraging green synthesis methods and developing strategies for pollution management. Although challenges like high computational expenses and limited data exist, advancements in quantum computing, artificial intelligence, and open-source platforms are expected to diminish these obstacles. In the end, computational nanotechnology stands at the leading edge of ground-breaking innovations that have the potential to tackle significant global issues in energy, healthcare, and environmental sustainability, propelling progress across various industries.

KEYWORDS

Computational nanotechnology; Nanomaterials; Density functional theory (DFT); Molecular dynamics (MD); Machine learning (ML)

ARTICLE HISTORY

Received 7 February 2024; Revised 29 February 2024; Accepted 6 March 2024

Introduction

The swift progress in nanotechnology has unlocked new possibilities in material science, allowing for the creation and advancement of innovative materials at the nanoscale that exhibit distinct properties and functionalities. With the increasing demand for high-performance materials across various applications from energy storage and conversion to healthcare and electronics there is an urgent need for more effective and precise approaches to expedite the discovery and enhancement of these materials [1,2]. While traditional experimental methods are essential, they often face challenges related to the complexities and expenses associated with developing nanoscale materials. To address these issues, computational nanotechnology has emerged as a groundbreaking strategy, merging state-of-the-art computational tools and techniques to simulate, model, and forecast the behavior of materials at the atomic and molecular scales [3].

This domain includes a range of sophisticated methodologies, such as DFT, MD, and ML, each playing a role in generating virtual models that can investigate a broad spectrum of material properties prior to physical creation [4]. By offering deeper understanding of the mechanisms driving

nanoscale interactions and the larger behaviors of materials, computational nanotechnology speeds up the process of identifying promising materials, minimizes experimental trial and error, and enhances material performance [5].

This examines the crucial function of computational nanotechnology in transforming the design, discovery, and advancement of cutting-edge nanomaterials. It emphasizes how this methodology is facilitating breakthroughs in critical areas including energy storage, nanomedicine, electronics, and environmental sustainability, while also recognizing the drawbacks of conventional techniques [6]. With the incorporation of advanced computational methods, the future landscape of nanomaterials development is poised to be quicker, more efficient, and more innovative than ever before.

Computational Nanotechnology: A Primer

Computational nanotechnology leverages sophisticated numerical simulations, mathematical models, and computational algorithms to understand and manipulate phenomena at the nanoscale [7]. By combining concepts from physics, chemistry, materials science, and engineering, it offers a

comprehensive approach for examining materials at atomic and molecular scales. This enables researchers to investigate and create materials and processes that may be challenging or unfeasible to attain using conventional experimental techniques, especially due to the intricacies and scale involved in nano systems [8].

Several essential computational tools underpin computational nanotechnology, each offering unique functionalities:

- Density functional theory (DFT): DFT is a quantum mechanical method that concentrates on the electronic structures of atoms and molecules. It facilitates the prediction of material characteristics such as energy levels, electronic band structures, and reactivity by approximating the interactions among electrons in a system [9]. Hence, DFT has become a crucial instrument for accurately forecasting material properties, making it especially beneficial in the development and enhancement of new nanomaterials, catalysts, and semiconductors.
- Molecular dynamics (MD) simulations: MD simulations monitor the movements and interactions of atoms and molecules over time, providing a dynamic representation of their behavior under varying conditions. By simulating the forces acting on individual atoms in accordance with classical mechanics, MD simulations yield essential insights into material properties including thermal conductivity, mechanical strength, and diffusion at the nanoscale [10]. This methodology is essential for analyzing phenomena such as self-assembly, phase transitions, and material deformation.
- Monte carlo simulations: Monte Carlo methods utilize statistical sampling to model the behavior of systems with numerous variables, yielding probabilistic representations of thermodynamic and statistical properties [11]. By sampling various potential configurations, Monte Carlo simulations can forecast phenomena such as phase transitions, diffusion, and surface interactions, thus proving beneficial for examining intricate systems that involve numerous interacting components, like polymers and nanoparticles.
- Machine learning (ML) and Artificial intelligence (AI): Recently, machine learning techniques have been incorporated into computational nanotechnology to expedite material discovery and optimization processes. AI and ML algorithms assess extensive datasets, uncovering concealed patterns and correlations in complex systems. These data-driven methodologies can predict material characteristics, refine design parameters, and facilitate high-throughput screening of prospective materials more effectively than traditional techniques [12]. Moreover, machine learning can support inverse design, where specific desired material properties guide the reverse-engineering of optimal molecular or structural configurations.

Accelerating Material Design

Efficient screening and optimization

Traditional methods for experimenting with new materials

require considerable resources and take a lot of time. Computational approaches help overcome these challenges through:

- **High-throughput screening:** Computational tools assess extensive material databases, quickly pinpointing candidates with the desired characteristics [13].
- Inverse design: Algorithms forecast the ideal structures necessary to obtain specific functions, reversing the conventional trial-and-error approach [14].

Multiscale modelling

Computational nanotechnology connects phenomena at the quantum level with the behavior of materials on a macroscopic scale. Multiscale modelling combines quantum mechanics, molecular simulations, and continuum mechanics, providing in-depth understanding of material characteristics and performance [15].

Contributions to Advanced Nanomaterials

Energy applications

In the realm of energy storage and conversion, computational models aid in identifying effective catalysts, electrodes, and photovoltaic materials. For instance:

- Battery innovation: Simulations forecast the ionic conductivity, stability, and energy densities of new electrode and electrolyte materials.
- **Hydrogen generation:** Computational resources create catalysts for water splitting and improve hydrogen storage materials with greater efficiency.

Biomedical innovations

In the field of nanomedicine, computational methods are utilized to develop systems for drug delivery, biosensors, and therapeutic agents. For instance:

- Nanocarriers: Simulations enhance the optimization of nanoparticle shapes, sizes, and surface chemistries aimed at targeted drug delivery.
- Protein-nanomaterial interactions: Computational research forecasts the biocompatibility and stability of nanomaterials within biological environments.

Electronics and photonics

In the field of electronics, computational nanotechnology enhances the progress of semiconductors, quantum dots, and nanophotonic devices by:

- Forecasting electronic band structures and optical characteristics.
- Simulating charge transport processes and thermal regulation.

Challenges and Future Directions

Despite its potential to bring about significant changes, computational nanotechnology encounters numerous obstacles. Achieving high-precision simulations often necessitates considerable computational power, resulting in elevated costs. Furthermore, aligning computational predictions with experimental outcomes requires strong validation protocols for

the models used [16]. The performance of machine learning models is also restricted by the scarcity of high-quality datasets. Nevertheless, the future of computational nanotechnology looks bright. The integration of quantum computing holds the promise of quicker and more precise simulations, while the growth of AI applications will streamline the processes of material discovery and design. In addition, the establishment of open-source platforms and shared databases will make computational resources more accessible, encouraging worldwide collaboration and speeding up progress in the field [17].

Conclusion

Computational nanotechnology is essential for speeding up the design, discovery, and development of innovative nanomaterials. By integrating advanced simulation methods, data-centric techniques, and multiscale modeling, it offers robust tools to investigate and manipulate materials at the atomic and molecular scales. This combination allows for the prediction and enhancement of material properties, providing solutions to significant challenges in various sectors, including energy, healthcare, electronics, and sustainability.

In the energy sector, computational approaches assist in optimizing catalysts and battery materials, thereby enhancing efficiency and performance. In the field of healthcare, they aid in crafting targeted drug delivery systems, biosensors, and diagnostic instruments, paving the way for personalized medicine solutions. Within electronics, computational nanotechnology fosters the development of semiconductors, photonics, and nanodevices, leading to more rapid and efficient electronic components. Furthermore, it contributes to sustainability by encouraging environmentally friendly synthesis methods and improving pollution management strategies.

As computational techniques advance alongside ongoing experimental verification, they are crucial for tapping into the complete potential of nanotechnology. The collaboration between computational simulations and experimental studies will fuel innovations across various industries, facilitating the creation of transformative materials and technologies that can tackle global issues in energy, healthcare, and environmental sustainability, ultimately influencing the future of technology and society.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

- Yang RX, McCandler CA, Andriuc O, Siron M, Woods-Robinson R, Horton MK, et al. Big data in a nano world: a review on computational, data-driven design of nanomaterials structures, properties, and synthesis. ACS Nano. 2022;16(12):19873-19891. https://doi.org/10.1021/acsnano.2c08411
- Seko A, Toyoura K, Muto S, Mizoguchi T, Broderick S. Progress in nanoinformatics and informational materials science. MRS Bull. 2018;43(9):690-695. https://doi.org/10.1557/MRS.2018.206
- Hassanzadeh P, Atyabi F, Dinarvand R. Application of modelling and nanotechnology-based approaches: The emergence of breakthroughs in theranostics of central nervous system disorders. Life Sci. 2017;182:93-103. https://doi.org/10.1016/j.lfs.2017.06.001
- 4. Huang B, von Rudorff GF, von Lilienfeld OA. The central role of

- density functional theory in the AI age. Sci. 2023;381(6654): 170-175. https://doi.org/10.1126/science.abn3445
- Yeo J, Jung GS, Martín-Martínez FJ, Ling S, Gu GX, Qin Z, et al. Materials-by-design: computation, synthesis, and characterization from atoms to structures. Phys Scr. 2018;93(5):053003. https://doi.org/10.1088/1402-4896/aab4e2
- Cho EH, Lyu Q, Lin LC. Computational discovery of nanoporous materials for energy-and environment-related applications. Mol Simul. 2019; 45(14-15):1122-1147. https://doi.org/10.1080/08927022.2019.1626990
- Musa SM, editor. Computational Nanotechnology: Modeling and Applications with MATLAB*. CRC Press; 2018. https://doi.org/10.1201/9781315217567
- Van Der Giessen E, Schultz PA, Bertin N, Bulatov VV, Cai W, Csányi G, et al. Roadmap on multiscale materials modeling. Model Simul Mater Sci Eng. 2020;28(4):043001. https://doi.org/10.1088/1361-651X/ab7150
- Chakraborty T, Chattaraj PK. Density functional theory for exploration of chemical reactivity: Successes and limitations. J Phys Org Chem. 2023;36(12):e4589. https://doi.org/10.1002/poc.4589
- Muraleedharan MG, Gordiz K, Rohskopf A, Wyant ST, Cheng Z, Graham S, et al. Understanding phonon transport properties using classical molecular dynamics simulations. arXiv preprint arXiv:2011.01070. 2020. Available at: https://arxiv.org/abs/2011.01070
- Montanaro A. Quantum speedup of Monte Carlo methods. Proc R Soc A: Math Phys Eng Sci. 2015;471(2181):20150301. https://doi.org/10.1098/rspa.2015.0301
- 12. Badini S, Regondi S, Pugliese R. Unleashing the power of artificial intelligence in materials design. Mater. 2023;16(17):5927. https://doi.org/10.3390/ma16175927
- Lin L. Materials databases infrastructure constructed by first principles calculations: A review. Mater Perform Charact. 2015; 4(1):148-169. https://doi.org/10.1520/MPC20150014
- Trimarchi G. Crystal structure prediction in the context of inverse materials design. J Semicond. 2018;39(7):071004. https://doi.org/10.1088/1674-4926/39/7/071004
- Vakhrushev AV. Computational Multiscale Modeling of Multiphase Nanosystems: Theory and Applications. Apple Academic Press; 2017. https://doi.org/10.1201/9781315207445
- Hack E, Lampeas G, Patterson EA. An evaluation of a protocol for the validation of computational solid mechanics models. J Strain Anal Eng Des. 2016;51(1):5-13. https://doi.org/10.1177/0309324715616017
- Takács Á, Rudas I, Haidegger T. Open-source research platforms and system integration in modern surgical robotics. Acta Univ Sapientiae, Electr Mech Eng. 2015;14(6):20-34.

